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SUMMARY

A new method for direct simulations of flexible filament suspensions in a non-zero Reynolds number flow
is developed. For fluid domain, simulations are based on a lattice Boltzmann equation. For solid domain,
a slender solid body is discretized into a chain of consecutive spherical segments contacting each other.
A constraint force algorithm is proposed to warrant constant bonding distance between two neighbouring
segments and non-slip velocity conditions at the contacting points so that the flexible filament moves and
rotates as a whole body. The fibre could be bent and twisted in the model. Non-linear inertial interactions
between fluid and flexible filament can be naturally studied by using this model embedded in the lattice
Boltzmann scheme. The present flexible fibre method is tested by using a rigid particle method when
the fibre stiffness is very large and by comparing the present results with theoretical and experimental
results. It is demonstrated that the present results have a reasonable accuracy and that the computational
results are consistent with the existed experimental results at non-zero Reynolds number flows. Copyright
q 2006 John Wiley & Sons, Ltd.
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1. INTRODUCTION AND BACKGROUND

Dynamics of flexible filaments in flows are important to understanding many phenomena encoun-
tered in biology, chemistry, physics and engineering. For example, bacteria uses flexible flagella
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to move. Flagella rotation will generate a flow field that affects flagella’s swimming manner
while eukaryotic flagella is used to propel sperm cells toward eggs. Another example is that
fibre-like actin filaments are dynamic polymers whose ATP-driven assembly in the cell cyto-
plasm drives shape changes, cell locomotion and chemotactic migration. Recent visualization
of F-actin, wormlike micelles and neurofilaments by using fluorescence microscopy reveal that
these biopolymer chains exhibit a variety of conformational and dynamical behaviours depend-
ing on many factors, including polymer concentration, polymer stiffness, flow and mechanical
stress [1].

In composite materials, the rheological property of the suspension may dominate forming
process of injection molding of fibre-reinforced resin. The macroscopic properties of compos-
ite or suspensions such as elastic modulus and strength will depend on orientation of fibres.
In the paper industry, distribution or structures of fibre suspensions at a high Reynolds num-
ber flow will determine drainage rate, screening, filtration and flocculation properties, in turn,
production rate of paper because a fast drainage rate could lead to a higher machine
speed.

Due to importance to science and engineering, many scientists reported their research results on
flexible fibre suspension in both experiments and theories [2–5]. Forgacs and Mason [6] measured
the rotation orbits of fibres when the flow is subjected to a shear in a diluted fibre suspension with
a very low concentration. Interaction between fibres was neglected in such a low concentration.
They observed ‘springy’, ‘snake’ and ‘S-turn’ rotations.

Several numerical methods are developed to simulate flexible filament motion and rheology
properties. Yamamoto and Matsuoka [7, 8] proposed a method in which a slender fibre is approx-
imated by a chain of spheres connected through a spring. The consecutive spheres are subjected
to bending and torsion forces. Based on a zero-Reynolds number flow model where inertia was
neglected, hydrodynamic forces were computed and fibre motion was simulated. Subsequently,
Ross et al. [9] employed a chain of rigid spheroid connected through ball and socket joints to
improve computation efficiency. In their model, the fibre length was fixed and not extensible. It
seems that the fixed fibre length model is consistent with experiments. Later, Stokes and Green
[10] used an immersed boundary method to consider the fibre influence on the fluid. The fibre was
treated as massless. The simulations were carried out in a two-dimensional space. Further, follow-
ing the Ross et al.’s work, Dong et al. [11] included wall effects in their simulation. Other different
numerical simulations of fibre suspensions were reported by Tornberg et al. [12] and Fan et al.
[13]. They employ a non-local slender body theory that yields an integral equation, along the
filament centreline. All the mentioned works above were limited to zero Reynolds number flows
where inertia of fluid and particles was ignored.

Currently, there is no any simulation method available to deal with flexible filaments in a finite
Reynolds number flow. Therefore, a new method for simulation of flexible filament suspensions
with inertia is urgently needed and will be developed. This new method is based on a lattice
Boltzmann simulation scheme that is equivalent to solve the Navier–Stokes equations where non-
linear inertial effects are naturally included.

The developed method is employed to simulate motion of flexible rodlike particles under
hydrodynamic forces. Dynamic information for both flexible fibres and fluid flows could be
extracted from the numerical simulations. Section 2 will present simulation method includ-
ing the lattice Boltzmann method and flexible fibre model as well as constraint force algo-
rithm. Simulation results will be reported in Section 3. The final section makes some
conclusions.
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2. SIMULATION METHOD

2.1. Flexible fibre model

Simulation domains can be divided into a solid region and a fluid region. In the solid region, a long
filament is discretized and approximated by a chain of consecutive spheres similar to the work of
Yamamoto and Matsuoka [7]. If the total number of spheres in a fibre is N and the fibre length
is L , the diameter of each sphere is D = L/N = 2d or called bonding distance. If the consecutive
spheres are labelled by an index i in an increasing order, the each bonding direction can be defined
by a unity vector

ei = Ri+1 − Ri

|Ri+1 − Ri | (1)

where Ri is the position of the mass centre of the i th sphere.
The length of the fibre is a constant, i.e. extension or compression of the fibre is ignored in this

model. However, the fibre can be bent and a bending angle �i can be measured through

cos �i = ei ◦ ei+1 (2)

The bending moment is M= (E I/D)(�i − �i0)b where b= ei × ei−1 is the bending plane, �i0 is
the equilibrium bending angle. E I is known as the bending rigidity with Young’s modulus E and
the moment of inertia of the cross-section area I = 1

4�d
4. Therefore, bending restore forces acting

on sphere i + 1, i and i − 1 can be calculated by

Fb
i+1 =− 1

2D
M× ei (3)

Fb
i−1 =− 1

2D
M× ei−1 (4)

Fb
i =−(Fi+1 + Fi−1) (5)

A fibre may be subjected to a torsion torque and be twisted by an angle of � around the bonding
ei . Thus, a restoring torque will be

Tt
i =−kt(�i − �i0)ei (6)

where kt = �d3G/4, G is the shear modulus, and �i0 is the equilibrium twisting angle.

2.2. Lattice Boltzmann method

For the fluid region, the lattice Boltzmann method is applied to simulate the interactions between
fluid and solid particles. The kinetic nature of lattice Boltzmann method enables it to simulate the
complex geometry such as flexible web [14–21].

In lattice-Boltzmann (LB) method [15, 22–26], fluid particles reside on the lattice nodes and
move to their nearest neighbours along the links with unit spacing in each unit time step. The
lattice Boltzmann equation with Bhatnagar–Groos–Krook (BGK) [27] single relaxation time, is
given by

f�(x + e�, t + 1) = f�(x, t) − 1

�

[
f�(x, t) − f eq� (x, t)

]
(7)
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where f�(x, t) is the fluid particle distribution function for particles with velocity e� at position x
and time t , f eq� (x, t) is the equilibrium distribution function and � is the single relaxation time.

The simulations will be performed using the D3Q15 model [22]. It possesses a rest particle
state, six links with the nearest neighbours, and eight links with next nearest neighbours. Periodic
boundary conditions in the flow direction with bounce back on the solid nodes will be used.
f eq� (x, t) is taken as

f eq� (x, t) =���f{1 + 3(e� · u) + 9
2 (e� · u)2 − 3

2 (u · u)} (8)

where �f is the density of the fluid, u is the velocity, � = 1 represents the particles which move to
the nearest neighbours, �= 2 represents the particles which move to the next nearest neighbours,
� = 0 represents the particles which rest at the nodes. The weight coefficient �� depends on the
discrete velocity set e� and dimensions of space. In D3Q15 model, the discrete velocity set is

e� =

⎧⎪⎨
⎪⎩

(0, 0, 0), � = 0

(±1, 0, 0), (0,±1, 0), (0, 0, ±1), � = 1

(±1,±1,±1), � = 2

(9)

and the weight coefficient is

�� =

⎧⎪⎪⎨
⎪⎪⎩

2
9 , � = 0

1
9 , � = 1

1
72 , � = 2

(10)

The mass density �f and momentum density �fu are given by

�f =
∑
�

f�, �fu= ∑
�

f�e� (11)

In a widely used class of models, the kinematic viscosity �, is related to the relaxation time �
for convergence which is given by

� = 1
3 (� − 1

2 ) (12)

When any case of R = 0 is simulated, the terms of the second order of velocity in the fluid particle
distribution function 8 is not included.

In order to match the fluid velocity with the solid boundary velocity at the fluid–solid interface,
a moving boundary condition [28] is applied by

f�′(x, t + 1) = f�(x, t+) − 6���fe� · Ub (13)

where �′ represents the reflecting direction and � denotes the incident direction of fluid particle at a
node adjacent to the solid-surface with the boundary velocity Ub =U0+X× xb, U0 is the velocity
of the mass centre of the corresponding solid particle, X is its angular velocity, xb = x+ 1

2e� −R,
x is the position of the node, R is the solid particle mass centre. The hydrodynamic force exerted
on the solid particle at the boundary node is computed by

F(x + 1
2e�) = 2e�( f�(x, t+) − 3���fUb · e�) (14)
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The total hydrodynamic force [15, 19] on the solid particle are produced, by

Fh
i = ∑

F(x + 1
2e�) ± �f(x, t)u(x, t) (15)

The summation is over all the boundary nodes on the fluid region associated with particle i . The
second term on the right hand side of the equation above considers the local fluid momentum
contribution whenever a fluid node either enters or leaves out of the solid region. The positive sign
is used when the fluid node enters the solid region. The minus sign is used when the solid node
becomes the fluid node and an equilibrium distribution function with the fluid velocity equal to
the solid boundary velocity is added on the new fluid node. Thus, the total torques on the solid
particle is

Th
i = ∑

(x + 1
2e� − R) × (F(x + 1

2e�) (16)

± �f(x, t)u(x, t)) (17)

In order to prevent spheres or fibre from overlap, a short range repulsive force Fr
j on sphere i

by sphere j is added [9]

Fr
i = K exp

[
−H

Ri j − D

D

]
ei j if Ri j�D

= K ei j if Ri j<D

(18)

where H controls the repulsive force range and K controls the force strength. We use K = 1 and
H = 10, thus the force range is 1

10 .

2.3. Constraint forces

The equations of translational and rotational motion for each constituent sphere of the fibre may
be expressed as

mU̇i =Fi (19)

I Ẋi =Ti (20)

where

Fi =Fb
i + Fh

i + Fr
i (21)

Ti =Tt
i + Th

i (22)

When we integrate the Newtonian dynamic equations above, it is important that a constraint
algorithm should be developed to force the chain of the discretized spheres moving and rotating
as a whole body.

Therefore, two restraint forces and corresponding torques (if any) have to be added to the
equations above for each sphere. The first force Giei , called radial constraint force, is used to
keep the bonding distance constant. It is obvious that this force should be in the direction along
the bonding vector connecting the mass centres of two spheres as shown in Figure 1.

The second force Qi , called tangential constraint force (see Figure 1), is used to maintain a
non-slip velocity boundary condition at contacting points of the two neighbouring spheres so that
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108 D. QI

Figure 1. Illustration of radial and tangential constraint forces, Giei and Qi , at the contacting point.

each sphere independently rotating about its own mass centre is removed. Its direction should
be perpendicular to the bonding vector at the contacting points. Essentially, this is a rotational
restraint force. It is obvious that Giei and Qi are nothing but the components of the constraint
force acting on particle i . Giei is the component parallel to the ei , while Qi is the component
perpendicular to the ei .

Further, to satisfy the two conditions at every time step, a leap-frog algorithm [29–31], for
integration of motion equations is modified. For radial distance constraint, the position of sphere
can be written as

Ri (t + h) =R′
i (t + h) + h2

m
(Giei − Gi−1ei−1) (23)

Ri+1(t + h) =R′
i+1(t + h) + h2

m
(Gi+1ei+1 − Giei ) (24)

where R′
i (t +h) and R′

i+1(t +h) are the positions without constraint forces, h is the length of time
step, Giei is the radial constraint force on sphere i by sphere i + 1. In the half leap-frog algorithm

R′
i (t + h) =Ri (t) + hUi (t + 1

2h) (25)

where

Ui

(
t + 1

2
h

)
=Ui

(
t − 1

2
h

)
+ h

m
Fi (t) (26)

here Fi is the force and Ui is the velocity of the mass centre of particle i .
To keep the constant bonding distance we have

(Ri+1(t + h) − Ri (t + h))2 = D2 (27)

Substituting Equations (23) and (24) into the equation above we obtain

A1G =C1 (28)

where A1 is a matrix of N−1 by N−1, the constraint force matrix G and C1 are N−1-dimensional
vector.

For the rotational constraint, the velocity at the contacting point between spheres i and i + 1
could be written as

Vi (t + h) =Ui (t + h) +Xi (t + h) × dei (29)
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and

Vi+1(t + h) =Ui+1(t + h) −Xi+1(t + h) × dei (30)

where

Ui (t + h) =U′
i (t + h) + 3h

2m
(Qi − Qi−1) (31)

Ui+1(t + h) =U′
i+1(t + h) + 3h

2m
(Qi+1 − Qi ) (32)

Xi (t + h) =X′
i (t + h) (33)

+ 3h

2I
(dei ×Qi + dei−1 ×Qi−1) (34)

Xi+1(t + h) =X′
i+1(t + h) (35)

+ 3h

2I
(dei+1 ×Qi+1 + dei ×Qi ) (36)

where U′
i andX

′
i are velocity and angular velocity without the restraint forces and can be written as

U′
i (t + h) =Ui

(
t − 1

2
h

)
(37)

+ 3h

2m
(Fi (t) + Giei − Gi−1ei−1) (38)

X′
i (t + h) =Xi

(
t − 1

2
h

)
+ 3h

2I
Ti (t) (39)

To satisfy the non-slip velocity at the contacting points, we set Vi (t + h) =Vi+1(t + h) for
i = 1, . . . , N − 1 and obtain

A2Q =C2 (40)

where A2 is a matrix of 3(N − 1) by 3(N − 1), the tangential constraint force matrix Q and C2
are a 3(N − 1)-dimensional vectors. Equations (28) and (40) can be solved by using a singular
decomposition method [31].

3. RESULTS AND DISCUSSIONS

3.1. Zero Reynolds numbers

Motion of a single flexible fibre in a Couette flow is simulated. The fibre density is equal to the
fluid density in this work. The single fibre is discretized as a chain of spheres, each with a diameter

Copyright q 2006 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2007; 54:103–118
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of 8. The fibre with an aspect ratio of r = 9 is moved and rotated between the bounded and sheared
walls. The total fibre length is 72. The confinement ratio of the channel width to the fibre length
is 1.5 for all the present simulations. The shear gradient is added in the x-direction, the vorticity
vector direction is in the z-direction, and the flow is in the y-direction.

For the very stiff fibre with E = 3.75, its rotational behaviour looks like a rigid fibre. To examine
the rotation, an angular distribution function is defined as the probability of the angle � of the
fibre principal axis with the flow or y-direction per unit angle. The simulation results of angular
distribution function for the fibre at the Reynolds number R = 0 are plotted in Figure 2 and
compared with the theoretical results of Jeffery formula [32] for ellipsoid

� = atan

[
re tan

(
	t

re
r2e + 1

)]
(41)

where � is the angle of the fibre with the horizontal direction (the y- or flow direction), 	 is the
shear rate and t is the time. Since the cylindrical shape is different from ellipsoid, equivalent fibre
aspect ratio is used to take into account the difference. Cox [33] employed theoretical analysis and
comparison with experiments to obtain equivalent aspect ratio of cylinder

re = 1.24
r√
ln r

(42)

The equation reproduced well experimental data. However, the shape of a chain of spheres is
different from either cylinder or ellipsoid. Therefore, equivalent aspect ratio for the present fi-
bre model should be slightly different from both of them. We calculate the equivalent aspect

(radian)
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Figure 2. The simulation result of angular distribution function is compared with Jeffery theory. The
equivalent aspect ratio of the fibre is re = 7.8.
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ratio re = 7.8 for the fibre using formula t	 = 2�(re + 1/re). The period t	 comes from the result
of a simulation at R = 0. We make a caution here. The formula is for the simple shear flow
without wall effect. The wall effect may increase the period slightly. It is not surprised that the
calculated equivalent aspect ratio re = 7.8 is slightly larger than the value of 7.5 predicted by using
Equation (42) due to the shape difference between the current fibre model and cylinder.

It is clear that the simulation result is in fairly good agreement with the theoretical result in
Figure 2 although a small deviation from Jeffery’s theory exists due to the wall effect. We have
also simulated several cases where fibres have different flexibilities. In simulations E is varied
to obtain different flexibilities while keeping all the other conditions same. We observe that as
flexibility increases the rotation patterns are changed from one pattern to other pattern.

As stiffness is reduced from a rigid fibre, it starts to be bent like a leaf-spring when it approaches
an angle of 45◦ with the horizontal direction and then flicks straight as its long body rotates close
to the horizontal or y direction as shown in the first row E = 1.25 of Figure 3. This rotating orbital
is called ‘springy’ [6]. When the fibre flexibility increases (where E = 0.25), fibre deformation
becomes more pronounced as shown in the second row. As E = 0.1, the more flexible fibre has
‘snake’ and ‘S-turns’ when its long body is mainly in the cross fluid or x direction the fibre is
stretched again when its long body is along the flow or y direction as shown in the 3rd and 4th
rows of Figure 3. As the fibre flexibility continuously increases or E = 0.025, ‘complex’ rotations
appear. In the pattern, the curved body remains all the time, the fibre is never stretched (the last

Figure 3. The snapshots at different times for fibres with E = 1.25 (the 1st row), E = 0.25 (2nd row),
E = 0.1 (the 3rd and 4th rows) E = 0.025 (5th row) during a half periodic time (all other simulation
conditions are the same). The fibre aspect ratio is r = 9. The time is in an increasing order from the left

to the right in the same row.
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Figure 4. The period decreases as flexibility increases and the period increases
as the Reynolds number increase due to inertia.

row in Figure 3). These rotation patterns in Figure 3 obtained from our simulations are consistent
with experimental observation.

If we plot the displacements of the end spheres of a fibre as a function of time, then the rotational
period can be measured from the variation of the displacement. We demonstrate that the period of
rotation of fibre in the Couette flow at R = 0 decreases as flexibility increases in Figure 4 (square
signs) and the basic trend is the same as that in experiments [6].

3.2. Non-zero Reynolds numbers

In order to further verify the validation of the present method at non-zero Reynolds number flows,
we run a pair of simulations at the same conditions but using two different methods and compare
their results. A rigid fibre consisting of five spheres side by side is simulated by using the rigid
particle method reported in References [15, 18]. The rigid particle method has been extensively
tested and is used to test the present flexible fibre method. A flexible fibre containing the same
number and size of spheres is simulated by using present method. This fibre has a very large
stiffness of E = 37.5 and it may, therefore, be considered as a rigid fibre. For these tests, two
different simulation box sizes are used to check the size effects. One box size is 60× 84× 84,
the fibre length is 40 and diameter of each sphere is 8. Other box size is 90× 126× 126 and the
corresponding fibre length and diameter are 60 and 12. The results have no significant difference
for the two different size simulation boxs. At the final stages of simulations the results of the
displacements of sphere A at one end of the fibre and sphere B at other end as a function of
time (t	) by using both the methods are plotted in Figure 5(a) for x-components and (b) for
y-components at R = 16.0 and in Figure 6 for those at R = 26.67. The fibre rotates in the xy-plane
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Figure 5. The displacements as a function of time by using rigid particle method and by using present
flexible fibre method. A(X) and A(Y ) are the x- and y-components of the displacements for end
sphere A in a fibre, B(X) and B(Y ) are those for other end sphere B. The displacements in the
figure is due to rotation about the mass centre of the centre sphere in a fibre at R = 16: (a) for the

x-components; and (b) for y-components.
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Figure 6. The same as the Figure 5 except R = 26.67.
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Figure 7. The displacements for end spheres A and B due to rotation are shown for the fibre with E = 0.1
at: (a) R = 0; and (b) R = 57.6 and for the fibre with E = 0.25 at: (c) R = 0; and (d) R = 57.6. A(x),
A(y) and A(z) are the displacements in x-, y- and z-components for end sphere A. B(x), B(y), and

B(z) are those for end sphere B.

perpendicular to the vorticity or z-direction. The displacements in the z-direction do not change
much and need not be shown. Although the curves in Figures 6 and 7 by using the rigid particle
method are not overlapped with those by using the present method, they are very close to each
other. For the case of R = 16, the result of period p= 35.16 by using the present method is only
5% larger than that of period p= 33.5 by using rigid particle method as shown in Figure 5. For the
case of R = 26.67, the period difference is within 4% as shown in Figure 6. The small difference
between two methods validates the flexible fibre method within a reasonable accuracy.
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To show inertial effects, several simulations are further performed for the flexible fibres with the
aspect ratio of r = 9 in a shearing flow channel at different Reynolds numbers. It is noted that a
flexible fibre will be bent during rotating. Therefore its largest dimension or length during rotation
varies, depending on the fibre flexibility and shear rates of flows. In this work, for comparison
purpose, we simply use the fibre dimension or length when the fibre is rigid to define Reynolds
number R = 	L2/�. However, the actual Reynolds number of the fibre should be determined by
the largest length of the fibre dimension during rotation and be generally lower than that calculated
by using the definition. The displacements of fibre end sphere A and B are shown in Figure 7(a)
and (b) for the fibre with E= 0.1 at R= 0 and 57.6 and in Figure 7(c) and (d) for the fibre with
E= 0.25 at the same Reynolds numbers. The translation of the mass centre of the centre sphere of
the fibre is hidden to exhibit displacements due to rotation only. It appears that the period is much
larger for the case of R = 57.6 than the case of R = 0 at the same fibre stiffness. Figure 8 presents
more evidence that the period increases as the Reynolds number increases for the fibre of E = 0.1.
The same inertial effect has been investigated and reported [34, 35] for rigid circular and elliptical
particles. Kossack and Acrivos predicted that as the Reynolds number increases the rotational
period of a cylinder increases. Ding et al. [36] reported the similar numerical results for elliptical
and ellipsoidal particles in shearing flows. Zettner and Yoda [37] experimentally confirmed the
previous authors’ findings. It seems that the inertia significantly slows down the rotation of the
flexible fibre due to a negative torque generated by a recirculating flow around the fibre in the
central region. The present results are consistent with the previous findings.
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Figure 8. The period as a function of Reynolds numbers for the flexible fibre with E = 0.1.
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4. CONCLUSIONS

A new method for simulations of flexible fibres is developed. In the method, the fibre is discretized
as a chain of contacting spheres. Two constraint forces are proposed to enforce non-slip velocity
boundary condition and constant bonding distance at the contacting points. Subsequently constraint
algorithms are developed to ensure the boundary conditions to be satisfied at every time step.
Using this method, the simulations reproduce rotational patterns, such as ‘springy’, ‘snake’, ‘S’
and ‘complex’ orbits. The results also show that rotational period decreases as fibre flexibility
increases. At non-zero Reynolds number, the rigid particle method is used to test the present
flexible fibre method. The result by using the present method is in fairly good agreement with
that by using the rigid particle method when fibre is very stiff. As the Reynolds number in the
tested range increases, the period increases. The results are consistent with experimental results. It
is demonstrated that the newly developed method is valid and faithful to physics of flexible fibre
suspensions in a non-zero Reynolds number flow.
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